Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Flavone-3'-sulfonamide ${ }^{1}$

Engin Kendi, ${ }^{\text {a* }}$ Süheyla Özbey, ${ }^{\text {a }}$ Oya Bozdağ ${ }^{\text {b }}$ and Rahmiye Ertan ${ }^{\text {b }}$

${ }^{\text {a }}$ Hacettepe University, Department of Physics Engineering, Beytepe 06532, Ankara, Turkey, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Ankara University, Tandoğan 06100, Ankara, Turkey
Correspondence e-mail: kendi@eti.cc.hun.edu.tr

Received 1 July 1999
Accepted 24 December 1999
In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$, the phenyl and benzene rings are quite planar, with maximum deviations from planarity of 0.009 (2) and 0.004 (1) \AA, respectively. The γ pyrone ring deviates from planarity and makes a dihedral angle of $8.3(3)^{\circ}$ with the 2 -phenyl substituent. The sulfonamide group is involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding.

Comment

Besides the extensive biological activity of flavonoids, this class of compounds exhibits antidiabetic (Hii \& Howell, 1985; Basnet et al., 1993; Ragunathan \& Sulochana, 1994) and aldose reductase inhibitory activity (Varma \& Kinoshita, 1976; Okuda et al., 1984; Aida et al., 1990). Aryl sulfonamides are widely used as starting materials in the synthesis of antidiabetic sulfonylureas (AFECT, 1995). The title compound, (I), is a flavonesulfonamide and was synthesized as a starting material for antidiabetic flavonesulfonylureas. The structure was elucidated by ${ }^{1} \mathrm{H}$ NMR, mass and IR spectroscopic techniques. The X-ray structure was determined in order to establish the conformation of the molecule.

(I)

All bond lengths and angles in (I) are normal. Rings A and B are quite planar: the maximum deviations are 0.009 (2) and 0.004 (1) \AA from the ring planes A and B, respectively. The pyrone ring C is distorted ($\chi^{2}=210.2$). The angles between rings A and C and B and C are $1.8(2)$ and $8.3(3)^{\circ}$, respectively, showing that the rings A, B and C are coplanar.

In the generally preferred conformation of flavones, the dihedral angle between the phenyl and the γ-pyrone rings is expected to be small, as in the case of (I). This angle is 13.9 (4) ${ }^{\circ}$ in 2-(2-ethoxycarbonyl-1,4-benzodioxan-7-yl)-4H-1-benzopyran-4-one (Özbey et al., 1997). Another parameter of

[^0]interest in flavone structures is the bond length between the benzopyrone and phenyl rings. In flavones, the increase in dihedral angle has the effect of increasing the length of this bond to the expected value for an $s p^{2}-s p^{2}$ single bond. In compound (I), the corresponding $\mathrm{C} 2-\mathrm{C} 11$ bond length is 1.478 (3) \AA. In 5-hydroxyflavone, the dihedral angle is 5.2 (9) ${ }^{\circ}$ and the $\mathrm{C} 2-\mathrm{C} 11$ bond is 1.465 (4) \AA (Shoja, 1990). In 2^{\prime} -methyl-3'-nitroflavone, these values are $139.8(2)^{\circ}$ and 1.491 (8) Å, respectively (Kendi et al., 1996). The widening of the $\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$ angle to 121.6 (2) ${ }^{\circ}$ and the narrowing of the $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$ angle to 115.2 (2) ${ }^{\circ}$ in the γ-pyrone ring may be attributed to the ring strain caused by the neighbouring $\mathrm{Csp}{ }^{2}-\mathrm{Csp} p^{2}$ atoms.

Atoms S1 and O3 of the sulfonamide group lie close to the plane of ring B, with deviations of 0.032 (1) and 0.045 (1) \AA from the plane, respectively. Atoms O4 and N1 are displaced from the least-squares plane of the atoms in ring B by 0.928 (2) and -1.474 (2) \AA, respectively.

The sulfonamide group in (I) is involved in intermolecular as well as intramolecular hydrogen bonding. It has been proposed by Rossi et al. (1980) that the hydrogen bonds involving O 2 would enhance the electron-withdrawing power of the pyrone ring on the phenyl ring, thus giving $\mathrm{C} 2-\mathrm{C} 11$ more double-bond character and forcing coplanarity between rings B and C. The crystal packing shows that the smaller the dihedral angle between the benzopyrone and phenyl rings, the stronger the stacking interactions that occur between adjacent molecules. Details of the hydrogen bonds and short contacts in (I) are given in Table 2.

Figure 1
ORTEPII (Johnson, 1976) drawing of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H -atoms are shown as small circles of arbitrary radii.

Experimental

Flavone $(2.50 \mathrm{~g}, 0.0113 \mathrm{~mol})$, obtained by the Baker-Venkataraman method, was added slowly with stirring to chlorosulfonic acid $(25 \mathrm{ml}$, 0.376 mol), which had been cooled to 263 K in an ice-salt bath. The reaction mixture was stirred for 2 d at room temperature and was then poured into iced water. The crude sulfonylchloride (1.40 g , 4.37 mmol) was treated with aqueous ammonia (100 ml) and stirred for 3 h at 273 K , and flavone- 3^{\prime}-sulfonamide, (I), was obtained by removing the excess ammonia under reduced pressure. The crude product was crystallized from ethanol-dimethyl sulfoxide (10:1)
(yield: $1.10 \mathrm{~g}, 83.66 \%$; m.p. $481-483 \mathrm{~K}$). Spectrosopic analysis: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}, \delta$, p.p.m.): $7.10(s, 1 \mathrm{H}, 3-\mathrm{H}), 7.52$ (ddd, $1 \mathrm{H}, 6-\mathrm{H}), 7.76-7.85$ ($\mathrm{m}, 3 \mathrm{H}, 7-\mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), 7.98 ($d, 1 \mathrm{H}, 8-\mathrm{H}$), 8.05 $\left(d d, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.28(d, 1 \mathrm{H}, 5-\mathrm{H}), 8.48\left(s, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$; mass spectroscopy $(70 \mathrm{eV}), m / \mathrm{e}: 301\left(M^{+}\right), 302(M+1), 303(M+2), 221,193,121,120$, 101, $92(\% 100), 64,63$; $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 1614(\gamma$-pyrone $\mathrm{C}=\mathrm{O})$.

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=301.32$
Triclinic, $P \overline{1}$
$a=8.6654$ (5) A
$b=8.7898$ (6) \AA
$c=10.0105$ (6) \AA
$\alpha=98.183$ (7) ${ }^{\circ}$
$\beta=112.991$ (6) ${ }^{\circ}$
$\gamma=104.673(6)^{\circ}$
$V=653.6$ (2) A^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.531 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9.4-18.2^{\circ}$
$\mu=0.263 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic, colourless
$0.56 \times 0.40 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffract-

$$
\begin{aligned}
& R_{\text {int }}=0.010 \\
& \theta_{\max }=26.3^{\circ} \\
& h=-10 \rightarrow 0 \\
& k=-10 \rightarrow 10 \\
& l=-11 \rightarrow 12 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: } 1.5 \%
\end{aligned}
$$

2834 measured reflections
2649 independent reflections
2057 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F
H atoms constrained $w=1 /\left(\sigma F^{2}\right)$
$R=0.037$
$(\Delta / \sigma)_{\max }<0.001$
$w R=0.044$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}^{\AA^{-3}}$
2057 reflections
192 parameters

Table 2
Hydrogen-bond and short-contact geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.67	$3.442(3)$	139
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{i}}$	0.95	2.78	$3.526(4)$	137
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.61	$3.417(3)$	144
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {iii }}$	0.95	2.71	$3.643(3)$	168
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 4^{\text {iii }}$	0.95	2.89	$3.391(2)$	115
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots 2^{\mathrm{iv}}$	0.95	1.99	$2.928(3)$	172
$\mathrm{~N} 1-\mathrm{H} 2 \mathrm{~N} \cdots 2^{\mathrm{v}}$	0.94	2.05	$2.976(3)$	169

Symmetry codes: (i) $x-1,1+y, z$; (ii) $x, 1+y, z$; (iii) $1-x, 1-y, 1-z$; (iv) $1+x, y, z$; (v) $1-x, 1-y, 2-z$.
1995); program(s) used to refine structure: MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: MolEN.

The authors acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1229). Services for accessing these data are described at the back of the journal.

References

AFECT (Association Française des Enseignants de chimie Thérapeutique) (1995). Traité de chimie Thérapeutique, Vol. 4, Médicament en Relation Avec des systèmes Hormonaux, edited by Y. Adam et al., Tec. Doc. Lavoisier Paris.
Aida, K., Tawata, M., Shindo, S., Onaya, T., Sasaki, H., Yamaguchi, T., Chin, M. \& Mitsuhasi, H. (1990). Planta Med. 56, 254-258.
Basnet, P., Kadota, S., Shimizu, M., Xu, H. X. \& Namba, T. (1993). Chem. Pharm. Bull. 41, 1790-1795.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hii, C. S. T. \& Howell, S. L. (1985). J. Endocrinol. 107, 1-8.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kendi, E., Özbey, S., Tunçbilek, M. \& Ertan, R. (1996). Cryst. Res. Technol. 31, 611-615.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Okuda, J., Miwa, I., Inagaki, K., Horie, T. \& Nakayama, M. (1984). Chem. Pharm. Bull. 32, 767-772.
Özbey, S., Kendi, E., Göker, H. \& Ertan, R. (1997). Acta Cryst. C53, 19811983.

Ragunathan, V. \& Sulochana, N. (1994). J. Indian Chem. Soc. 71, 705-706.
Rossi, M., Cantrell, J. S., Farber, A. J., Dyott, T., Carrell, H. L. \& Glusker, J. P. (1980). Cancer Res. 40, 2774-2778.

Shoja, M. (1990). Acta Cryst. C46, 517-519.
Varma, S. D. \& Kinoshita, J. H. (1976). Biochem. Pharmacol. 25, 2502-2513.

[^0]: ${ }^{1}$ Systematic name: 3-(4-oxo-4H-1-benzopyran-2-yl)benzenesulfonamide.

